Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study.
نویسندگان
چکیده
Metformin, a drug widely used in the treatment of Type II diabetes, has recently received attention owing to new findings regarding its mitochondrial and cellular effects. In the present study, the effects of metformin on respiration, complex 1 activity, mitochondrial permeability transition, cytochrome c release and cell death were investigated in cultured cells from a human carcinoma-derived cell line (KB cells). Metformin significantly decreased respiration both in intact cells and after permeabilization. This was due to a mild and specific inhibition of the respiratory chain complex 1. In addition, metformin prevented to a significant extent mitochondrial permeability transition both in permeabilized cells, as induced by calcium, and in intact cells, as induced by the glutathione-oxidizing agent t-butyl hydroperoxide. This effect was equivalent to that of cyclosporin A, the reference inhibitor. Finally, metformin impaired the t-butyl hydroperoxide-induced cell death, as judged by Trypan Blue exclusion, propidium iodide staining and cytochrome c release. We propose that metformin prevents the permeability transition-related commitment to cell death in relation to its mild inhibitory effect on complex 1, which is responsible for a decreased probability of mitochondrial permeability transition.
منابع مشابه
Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process.
Hyperglycemia-induced oxidative stress is detrimental for endothelial cells, contributing to the vascular complications of diabetes. The mitochondrial permeability transition pore (PTP) is an oxidative stress-sensitive channel involved in cell death; therefore, we have examined its potential role in endothelial cells exposed to oxidative stress or high glucose level. Metformin, an antihyperglyc...
متن کاملThe Role of PPARα in Metformin-Induced Attenuation of Mitochondrial Dysfunction in Acute Cardiac Ischemia/Reperfusion in Rats
Metformin, an anti-diabetic drug, exerts cardioprotection against ischemia-reperfusion (IR) through the activation of AMPK. However, the molecular mechanisms underlying these beneficial effects remain elusive. In this study, we examined the role of PPARα in mediating cardioprotective effects of metformin on mitochondria. Hearts of male Sprague-Dawley rats perfused by Langendorff were subjected ...
متن کاملCyclosporin A inhibits caspase-independent death of NGF-deprived sympathetic neurons: a potential role for mitochondrial permeability transition
A inhibits caspase-independent death of NGF-deprived sympathetic neurons: a potential role for mitochondrial permeability transition.. pening of the permeability transition pore (PTP) has been implicated as an important mitochondrial event that occurs during apoptosis. We examined the role of the PTP in the well-characterized cell death of rat sympathetic neurons deprived of nerve growth factor...
متن کاملMethanol extract and fraction of Anchomanes difformis root tuber modulate liver mitochondrial membrane permeability transition pore opening in rats
Objective: Extracts of Anchomanes difformis (AD) are used in folkloric medicine to treat several diseases and infections. However, their roles in mitochondrial permeability transition pore opening are not known. Material and Methods: The viability of mitochondria isolated from Wistar rat liver used in this experiment, was assessed by monitoring their swel...
متن کاملHeavy Metal Induced Cell Necrosis: Involves Apoptosis Death Signals Initiated by Mitochondrial Injury
Introduction: Severe industrial diseases result from the hepatic accumulation of mercury, cadmium or chromium in humans and on the other hand cadmium and dichromate and mercuric salts may induce lung or kidney cancer. Acute or chronic CdCl2, HgCl2 or dichromate administration induces hepatic and nephrotoxicity in rodents. Oxidative stress is often cited as a possible cause of metal induced cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 382 Pt 3 شماره
صفحات -
تاریخ انتشار 2004